CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556

Characterization of Novel Binuclear Ytterbium Compounds

By Robert G. Haves and Joseph L. Thomas

Received April 22, 1969

The reaction of solutions of ytterbium in liquid ammonia with cyclopentadiene has been used to prepare ytterbium cyclopentadienides. The products of the reaction have been reported to be YbCp₃ and various other species, among them YbCp₂NH₂.^{1,2} We have reexamined the reaction and have isolated three products by fractional sublimation of the reaction mixture after removing the ammonia and the cyclopentadiene. The products in question, deep green, yellow, and red compounds, sublime at 150, 170, and 360° respectively, at a pressure of about 10 μ . The first compound has been known for some time to be YbCp₃. The third compound, which was previously thought to be YbCp₂H,³ proves to be YbCp₂ on the basis of mass spectral analysis and nmr, which shows a resonance due to Cp protons at τ 4.6. This agrees with the value obtained for YbCp₂ prepared by other methods.³ We wish to discuss the structure of the second compound. The compound was identified as a binuclear Yb compound by examination of the complex isotopic pattern of the various molecular ions in the mass spectrum. Similar isotopic patterns have been observed for all ions with m/e > 371 (YbCp₃). This pattern contained many more lines than the simple, distinctive Yb isotopic pattern and was assigned to a Yb₂ compound. Since the ion of greatest intensity corresponded to Yb₂Cp₃- N_2H_4 , we have calculated its expected intensity pattern, taking into account the isotopic composition of Yb and also using the fact that 15% of the molecules have one ¹³C in the three cyclopentadienide groups. The comparison of the pattern calculated with that observed appears in Table I.

TABLE I									
THEORETICAL AND EXPERIMENTAL									
Ion Abundances for Yb ₂ Cp ₃ N ₂ H ₄									
m/e	Theoret	Exptl	m/e	Theoret	Exptl				
568	0.8	0.9	575	15.5	15.6				
569	3.1	3.2	576	5.6	6.2				
570	6.7	6.4	577	7.6	7.6				
571	10.8	10.6	578	1.1	1.4				

14.8

16.6

14.6

1.6

0.3

572

573

574

15.6

17.2

14.4

As one can see, the agreement is good. This agreement allows us to assign isotopic compositions to each

579

580

1.4

0.2

peak in the pattern and, since the m/e ratios of the peaks were determined by peak matching, to obtain a formula for the species responsible for the pattern. The complete mass spectrum of the compound helps remove ambiguities in the molecular composition of the species. This spectrum, in which only the Yb¹⁷³Yb¹⁷³ peaks are shown for each ion, appears in Table II.

TABLE II										
Mass Spectrum of Compound II in the										
HIGH MASS REGION USING 70-V ELECTRONS										
		Rel			Rel					
	m/e	intens		m/e	intens					
$Yb_2Cp_4N_2H_4^+$	638	17	$\mathrm{Yb_2Cp_2N_2H_4^+}$	508	6					
Yb ₂ Cp ₄ NH ⁺	621	3	$Yb_2Cp_2NH^+$	491	15					
$\mathrm{Yb}_{2}\mathrm{Cp}_{3}\mathrm{N}_{2}\mathrm{H}_{4}^{+}$	573	100	$Yb_2Cp_2^+$	476	2					
$Yb_2Cp_3NH^+$	556	14	$\mathrm{Yb}_{2}\mathrm{CpN}_{2}\mathrm{H}_{4}^{+}$	443	5					

Yb₂CpNH+

426

10

4

Yb₂Cp₃+

541

The most intense peak centered at m/e 573 proves to be $Yb_2Cp_3N_2H_4$. This assignment is supported by the fact that the next two groups at lower m/e correspond to loss of NH₃ followed by NH, so that the species have the formulas Yb₂Cp₃N₂H₄, Yb₂Cp₃NH, and Yb₂Cp₃. Also, peaks are observed at m/e 638 and 621 which correspond to Yb₂Cp₄N₂H₄ and Yb₂Cp₄NH. Successive loss of the various cyclopentadiene, NH, and NH₃ moieties is observed at lower m/e. Furthermore, it appears that Yb₂ ions containing less than three cyclopentadiene rings are more stable as NH+ ions while ions with three or more cyclopentadienes are more stable as $N_2H_4^+$ ions. Currently we have no explanation for this phenomenon.

It is clear that we are dealing with a dimeric species. but it is not obvious whether the parent is Yb₂Cp₃N₂H₄ or $Yb_2Cp_4N_2H_4$ or a mixture. Although hampered by the disparity in intensities, evidence for a mixture was obtained by appearance potential measurements, which yield appearance potentials of 8.7 ± 0.2 and $8.4 \pm$ 0.2 eV for Yb₂Cp₄N₂H₄ and Yb₂Cp₃N₂H₄, respectively. Thus, it is very unlikely that Yb₂Cp₃N₂H₄ results from the decomposition of $Yb_2Cp_4N_2H_4$ since the appearance potentials of species such as YbCp₃+/YbCp₃ and Yb- $Cp_2^+/YbCp_3$ or $YbCp_2/YbCp_2$ and $YbCp_4/YbCp_2$ differ by about 2–3 eV.⁴ Also, the possibility that Yb₂-Cp₄N₂H₄ might be due to an ion-molecule reaction in the mass spectrometer source was discounted since the relatively high intensity of the Yb₂Cp₄N₂H₄ peaks is not characteristic of an ion-molecule product. Elemental analyses were inconclusive although they tended to support the presence of a mixture.

The most logical proposal is that we have a mixture of Yb₂Cp₄N₂H₄, which may have amide bridges like the weak chlorine bridges suggested for Yb(CH₃Cp)₂Cl in benzene solution,⁵ and Yb₂Cp₃N₂H₄, which seems to have two labile amides and, thus, some type of bridging cyclopentadienes as suggested for the "triple-decker"

⁽¹⁾ E. Fisher and H. Fisher, J. Organometal. Chem. (Amsterdam), 3, 181 (1965).(2) E. Fisher and H. Fisher, ibid., 6, 141 (1966).

⁽³⁾ F. Calderazzo, R. Pappalardo, and S. Losi, J. Inorg. Nucl. Chem., 28, 987 (1966).

⁽⁴⁾ Results of unpublished work performed at this laboratory.

⁽⁵⁾ R. Maginn, S. Manastyrskyi, and M. Dubeck, J. Am. Chem. Soc., 78, 42 (1956).

compounds $Fe_2Cp_3^+$ and $Ni_2Cp_3^+$.⁶ We are currently investigating the possibility of similar europium compounds. After this article was prepared, another report on Yb_2Cp_4 appeared.⁷ Although our results differ in some areas, the gross features are substantially the same.

Experimental Section

The compounds were prepared on a vacuum line by transferring some 30 ml of anhydrous ammonia and 0.04 mol of cyclopentadiene to a vessel containing 0.01 g-atom of Yb metal (99.9%). The vessel was subsequently warmed with a chloroform slush in order to liquefy the ammonia. After 2 hr, NH₃ and excess cyclopentadiene were removed and the products were obtained by fractional sublimation. Owing to the ease of oxidation and hydrolysis of these compounds, rigid exclusion of oxygen and moisture was necessary throughout their preparation and examination. Nmr analyses were performed on a Varian A-60A and a Picker MS 902 was used for mass spectral analysis. The vanishing-current method was used for appearance potential measurements and xenon was used as a reference.

Acknowledgment.—The partial support of this work by the National Science Foundation (Grant No. GP-7881) is gratefully acknowledged.

(6) E. Schumacher and R. Taubenest, Helv. Chim. Acta, 47, 1525 (1964).

(7) J. Müller, Chem. Ber., 102, 152 (1969).

Contribution from the Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506

Complexes of Cationic Dithiocarbamate Ligands

By B. Jack McCormick, Benjamin P. Stormer, and Roy I. Kaplan

Received May 2, 1969

Complexes of cationic ligands have been reported infrequently, although the few reports available suggest that such compounds may be stable and amenable to detailed study. Quagliano and coworkers¹⁻³ have recently characterized a variety of complexes derived from positively charged diamine and zwitterion ligands and Meek⁴ has reported the first example of coordination by a positively charged phosphorus ligand.

We report here the preparation and characterization of several dithiocarbamate complexes of cobalt(III), nickel(II), and palladium(II), some of which are highly charged and involve cationic ligands.

Experimental Section

Reagents.—Reagent grade metal salts and 1,1,7,7-tetraethyldiethylenetriamine (Ames Laboratories, Inc.) were used as received. The yellowish white compound N,N-di(2-N,N-diethylamino)ethyldithiocarbamic acid (L) was prepared by treating 1,1,7,7-tetraethyldiethylenetriamine with carbon disulfide in diethyl ether.^{5,6} The ammonium and potassium salts of N,N-di(2-N,N-diethylamino)ethyldithiocarbamate (L^-) were prepared by treating L with NH₄OH and KOH, respectively, in methanol. Other reagent grade materials were used as received.

Preparation of Complexes. Bis(N,N-di(2-N,N-diethylamino)ethyldithiocarbamato)nickel(II), Ni(L^-)₂.—An aqueous solution of 2.37 g (0.01 mol) of NiCl₂·6H₂O in 50 ml of water was treated with 50 ml of water containing 6.60 g (0.02 mol) of potassium N,N-di(2-N,N-diethylamino)ethyldithiocarbamate. The green complex which formed was separated by filtration, washed with water, and dried *in vacuo* over P₄O₁₀. The compound was diamagnetic. *Anal.* Calcd for C₂₅H₅₆N₆NiS₄: C, 48.8; H, 8.83; N, 13.1. Found: C, 49.0: H, 8.84; N, 13.1.

Bis(N,N-di(2-N,N-diethylamino)ethyldithiocarbamato)palladium(II), Pd(L^{-})₂.—A solution of 0.978 g (0.003 mol) of K₂Pd-Cl₄ in 30 ml of water was added slowly to 1.85 g (0.006 mol) of ammonium N,N-di(2-N,N-diethylamino)ethyldithiocarbamate. The yellow precipitate which formed was collected on a filter and washed with water. Recrystallization from methanol by slow addition of water followed by drying *in vacuo* over P₄O₁₀ provided an analytically pure sample. *Anal.* Calcd for C₂₆H₅₆N₆PdS₄: C, 45.4; H, 8.20; N, 12.3. Found: C, 45.6; H, 8.39; N, 12.3.

Tris(N,N-di(2-N,N-diethylamino)ethyldithiocarbamato)cobalt-(III), $Co(L^-)_8$.—To 8.25 g (0.025 mol) of potassium N,N-di(2-N,N-diethylamino)ethyldithiocarbamate was added 2.14 g (0.008 mol) of hexaamminecobalt(III) chloride in 200 ml of water. The resulting mixture was heated at 80° for 30 min during which time ammonia was evolved and a dark green, tacky oil collected at the bottom of the container. The oil was separated from the reaction solvent and dissolved in ether. After filtration the ether was evaporated to leave a green oil which could not be crystallized. Elemental analyses were not obtained for the oil; however, the optical and infrared spectra and chemical properties indicated that the compound is a tris(dithiocarbamato)cobalt(III) complex.^{7.8}

Bis(N,N-di(2-N,N-diethylammonium)ethyldithiocarbamato)nickel(II) Chloride, Ni(L⁺)₂Cl₄. Method 1.—To 1.46 g (0.005 mol) of L in 50 ml of methanol was added 5.0 ml of 1 M (0.005 mol) hydrochloric acid. This produced the positively charged ligand L⁺ in solution. To this solution was added 0.594 g (0.0025 mol) of NiCl₂·6H₂O in 20 ml of methanol, whereupon the green complex Ni(L⁺)₂Cl₄ formed. Addition of diethyl ether resulted in the precipitation of solid, green Ni(L⁺)₂Cl₄ which was identical with that prepared by method 2.

Method 2.—Dry hydrogen chloride was bubbled into a solution of Ni(L⁻)₂ in diethyl ether. Green microcrystals of Ni- $(L^+)_2$ Cl₄ began to form immediately and after *ca*. 5 min the crystals were collected on a filter, washed with 60 ml of cold HCl-saturated ether, air dried, and then dried *in vacuo* over P₄O₁₀. The compound was diamagnetic. In practice, method 1 was less convenient than method 2 and most of the samples studied in this work were prepared by the latter procedure. *Anal.* Calcd for C₂₆H₆₀Cl₄N₆NiS₄: C, 39.8; H, 7.70; Cl, 18.0; N, 10.7. Found: C, 39.7; H, 7.89; Cl, 17.6; N, 10.5.

Bis(N,N-di(2-N,N-diethylammonium)ethyldithiocarbamato)-palladium(II) Chloride, Pd(L⁺)₂Cl₄. Method 1.—This method was analogous to that given above for Ni(L⁺)₂Cl₄. The starting palladium compound was K₂PdCl₄.

Method 2.—This procedure corresponded to method 2 given above for the preparation of $Ni(L^+)_2Cl_4$. Anal. Calcd for $C_{26}H_{60}Cl_4N_6PdS_4$: C, 37.3; H, 7.25; Cl, 16.5. Found: C, 37.4; H, 7.25; Cl, 16.0.

⁽¹⁾ J. V. Quagliano, S. Kida, and J. Fujita, J. Am. Chem. Soc., 84, 724 (1962).

 ⁽²⁾ J. V. Quagliano, J. T. Summers, and L. M. Vallarino, Inorg. Chem., 3, 1557 (1964).
(2) A. K. Banarina, L. M. Vallarina, and L. V. Quagliana, Cauri, Chem.

⁽³⁾ A. K. Banerjee, L. M. Vallarino, and J. V. Quagliano, Coord. Chem. Rev., 1, 239 (1966).

⁽⁴⁾ D. Berglund and D. W. Meek, J. Am. Chem. Soc., 90, 518 (1968).

⁽⁵⁾ F. J. Welcher, "Organic Analytical Reactions," Vol. IV, D. Van Nostrand Co., Inc., New York, N. Y., 1948, p 82.

⁽⁶⁾ Anal. Calcd for $C_{18}H_{28}N_8S_2;\,\,C,\,53.5;\,\,H,\,10.0.$ Found: C, 53.8; H, 10.1.

⁽⁷⁾ C. K. Jørgensen, J. Inorg. Nucl. Chem., 24, 1571 (1962).

⁽⁸⁾ J. Chatt, L. A. Duncanson, and L. M. Venanzi, Suomen Kemistilehti, **B29**, 75 (1956).